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a b s t r a c t

A novel computational treatment of dense, stiff, coupled reaction rate equations is introduced to study
the nucleation, growth, and possible coalescence of cavities during neutron irradiation of metals. Radia-
tion damage is modeled by the creation of Frenkel pair defects and helium impurity atoms. A multi-
dimensional cluster size distribution function allows independent evolution of the vacancy and helium
content of cavities, distinguishing voids and bubbles. A model with sessile cavities and no cluster–cluster
coalescence can result in a bimodal final cavity size distribution with coexistence of small, high-pressure
bubbles and large, low-pressure voids. A model that includes unhindered cavity diffusion and coalescence
ultimately removes the small helium bubbles from the system, leaving only large voids. The terminal void
density is also reduced and the incubation period and terminal swelling rate can be greatly altered by
cavity coalescence. Temperature-dependent trapping of voids/bubbles by precipitates and alterations
in void surface diffusion from adsorbed impurities and internal gas pressure may give rise to intermedi-
ate swelling behavior through their effects on cavity mobility and coalescence.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Irradiation of metals has long been known to culminate in mac-
roscopic property changes including void swelling [1]. Characteris-
tic stable voids and steady volumetric swelling develop for a range
of temperatures and fluxes, independent of whether radiation
bombardment damage occurs as disseminated Frenkel pairs or as
small defect clusters. This can occur whether or not helium is gen-
erated along with atomic displacements. In either case, small,
unstable voids, loops, and other defect clusters will develop almost
immediately within the irradiated material. Their subsequent evo-
lution determines the fluence required to create stable voids and
achieve steady swelling; this so-called incubation dose includes
most of the dependence on radiation environment [2–4]. The pro-
cesses that govern microstructure evolution include thermally-
activated motion of small defect clusters, mutual impingement,
and annihilation or coalescence reactions along with micro-chem-
ical changes from nuclear transmutation and displacements or dif-
fusion of pre-existing impurities. Radiation simulations should
ideally encompass all of these processes. Typically, existing models
have included only particular types of defects and reactions or
have made other numerical approximations in order to obtain a
solution.
ll rights reserved.
At the least, simulations of early irradiation must account for
void nucleation and growth processes, since annihilation, aggrega-
tion, and cluster ripening take place concurrently. Transient and
steady-state swelling behavior due to these processes have been
studied recently using a mean field monomer aggregation model
[5–8]. However, only void reactions with vacancy or interstitial
monomers are included in these studies. This minimal model of
void nucleation gives reasonable swelling behavior as a function
of temperature and flux [7,8], viz. an observed steady swelling rate
around 1%/dpa in austenitic stainless steels and an important
flux-effect on the measured incubation times [9,10]. While the
results are encouraging, these calculations neglect many of the
processes believed to shape the microstructure. For example, the
generation and aggregation of helium impurities is not explicitly
modeled. Void diffusion, impingement, and direct void–void coa-
lescence are excluded, thus the size-dependent void diffusion
[11,12] is effectively set to zero in this model. (Void impingement
via the expansion of adjacent cavities [13] is not considered here,
as the mean field approximation is most appropriate for a small
volume fraction of voids.) Dislocation loop formation, migration,
and coalescence is not explicitly simulated either. The model [5–
8] can be considered to combine the production and biased diffu-
sion of small vacancy and interstitial clusters into effective gener-
ation and reaction rates for monomer species alone, but it is
unclear a priori how a coarse-grained treatment of these processes
affects microstructure evolution.

It is now clear that this earlier model must presuppose a ready
supply of gas impurity atoms (e.g., oxygen and helium [14]) to
promote the formation of small voids from the radiation-induced,
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supersaturated vacancy population. In practice, reasonable correc-
tions to void energies may reproduce the approximate void num-
ber density observed in irradiated steel [8]. Ultimately, however,
crude models for the apportionment of impurities among the
defect clusters should be supplanted by a detailed accounting of
multicomponent aggregation and coalescence reactions and their
influence on the non-equilibrium cluster size distribution. Such
problems are widely addressed in the literature, including gelation,
polymerization, and formation of aerosols and precipitates in solid
or fluid media [15–31]. The numerical methods developed for such
problems may also be fruitfully applied to radiation swelling. Here,
a hybrid numerical approach that can encompass the full range of
possible cluster compositions and cluster reactions in mean field is
introduced, a Livermore Microstructure Evolution program, LiME.
As a first application, the method is applied to the nucleation and
growth of voids with a two-component distribution of cluster com-
positions, examining the evolution of helium–vacancy clusters
[14], while continuing to treat oxygen adsorption by simply reduc-
ing the cavity surface energy by a constant (temperature-indepen-
dent) factor. The method predicts realistic swelling behavior for
ferritic steel in reactor environments.

As before, the void distribution function is partitioned into
overlapping regions [5], treating small clusters with the Master
Equation (ME domain) and large ones with Monte Carlo meth-
ods (MC domain). This allows self-consistent evolution of the
full void population with no truncation or coarse-graining of
the size domain, no assumptions as to the critical void size or
the nature of the nucleation process, and no approximations
for the overall nucleation rate or duration of the nucleation
stage. The formation and evolution of dislocation loops is not
explicitly modeled; network dislocations and loops are already
described by a single, time-dependent density parameter rather
than a detailed size distribution function [32]. However, the
methods used for void evolution would be easily generalizable
to other defect species and reactions, provided that suitable
mean field rate coefficients are specified for their reaction rate
equations. In particular, future calculations will consider the
formation, unfaulting, and migration of dislocation loops; loop
coalescence and annihilation; and incorporation of loops in the
dislocation network.

The remainder of this paper first describes the coupled, stiff,
non-linear evolution equations for void nucleation, growth, and
coalescence. It presents the microscopic rate theory model, gives
an overview of the computational scheme, details the various
numerical methods employed in the calculations, and makes a pre-
liminary application to void nucleation in irradiated stainless steel.
The simulations include vacancy, interstitial, and helium genera-
tion, aggregation and, annihilation, with or without cluster coales-
cence. The results are sensitive to the effects of absorbed impurity
atoms on cavity surface energy. They also expose a substantial
influence of small, unstable, mobile clusters on the formation of
critical-sized voids via direct cluster–cluster coalescence. Realistic
incubation and swelling behavior cannot be obtained over wide
ranges of temperature and flux without including cluster mobility
and coalescence.
2. Rate theory model

Allowable microstructure reactions (either defect aggregation
or annihilation) are assumed to occur whenever two defects, m
and n, come into contact. Within the mean field continuum
approximation, the collision rate is proportional to their relative
diffusivity, Dm;n, and effective collision cross-section, Am;n. As be-
fore [5,8], a bias factor Zm;n includes the effect of long-range inter-
actions [33,34] on the binary reaction rates, Kðm;nÞqmqn,
where q are densities of reactant species m 6¼ n and the rate coef-
ficients are

Kðm;nÞ ¼ Zm;nAm;nDm;n: ð1Þ

Note that an additional factor of 1/2 may be required when m ¼ n,
to prevent double-counting of unique pairs of identical reactant
particles. This factor is not explicitly shown in the definition of K.

Microstructure defect species are limited here to self-intersti-
tials and vacancies, substitutional and interstitial helium, voids/
bubbles, and network dislocations. Vacancy and helium monomers
as well as clusters are characterized by their composition,
n ¼ ðnvac;nhelÞ, in a two dimensional space. Vacancies and intersti-
tials are also specially identified by ð1;0Þ ¼ v and ð�1;0Þ ¼ i,
respectively; substitutional and interstitial helium by ð1;1Þ ¼ vh
and ð0;1Þ ¼ h; and network dislocations by d. Monomer densities
evolve according to
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The vacancy–vacancy aggregation term, ðZv;vAv;vDv;vÞqvqv, within
the first summation for dqv=dt in Eq. (2) includes that two vacancies
are consumed by the reaction, that there is a factor of 1/2 to prevent
double-counting of unique pairs of vacancies from the population
qv, and that the relative diffusivity is twice Dv. The net rate is iden-
tical to that used in a previous study [5]. Similar considerations also
apply to pairs of substitutional helium and to thermal dissociation
of vacancy dimers.

Cluster (n 62 fv; vh;h; ig) densities evolve as
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in terms of any direct generation of clusters in the radiation damage
cascade, gn; reactions of existing clusters with monomers (in brack-
ets) that consume or create n-mers including thermal emission of
vacancies, and cluster–cluster reactions (in the second set of brack-
ets) that consume or create n-mers. Factors of 1/2 in the first and
last summations prevent double-counting of indistinguishable reac-
tant pairs, and dm;n ¼ dmv ;nv dmh ;nh

where the right hand side consists

of the usual Kronecker deltas, di;j ¼
1 i ¼ j
0 i 6¼ j

�
. The primed summa-

tion is restricted to all pairs of reactants with
m;n�m 62 fv; vh;h; ig. Defects n�m (n� v, etc.) are restricted to
the domain of allowed compositions by a step-function:

UðnÞ ¼ UðnvÞUðnhÞ, where UðnÞ ¼ 1 n P 0
0 n < 0

�
. Finally, clusters
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never undergo fragmentation in this model, only the thermal emis-
sion of single vacancies.

Radiation damage deposition is approximated by the creation of
disseminated monomers (Frenkel pairs), so gn � 0 for n 62 fv;
vh;h; ig. In this case, gi ¼ /n, in terms of the atomic displacement
rate, /, and the damage production efficiency, n. The total helium
production is gh þ gvh, with the ratio of interstitial to substitutional
depending on the model. (Here, it is assumed that the helium is all
deposited as substitutional defects.) Conservation of host atoms
(including transmutation products) requires gv þ gvh � gi. Helium
impurities are added with a temperature-independent, gradual
activation of a-emitters. This is modeled for a Fe–Ni–Cr steel
undergoing neutron bombardment according a two-step activation
process, in analogy to the 58Ni(n,c)59Ni(n,a) reaction. Model trans-
mutation rates are treated as free parameters and are fit to the
experimental helium content in HFIR-irradiated nickel [35,36].
The parameters are c, a, and d for the rates of (respectively)
58Ni(n,c), 59Ni(n,a), and the sum of all transmutations that con-
sume 59Ni. In terms of the cumulative radiation dose in dpa,
x ¼

R
/ðtÞdt (for radiation flux, /):

d
dx

q58

q59

� �
¼
�c 0
þc �d

� � q58

q59

� �
: ð4Þ

The 59Ni content, q59, is obtained from Eq. (4) by transforming to
the eigenbasis, where qAðxÞ ¼ q58ðxÞ and qBðxÞ ¼ q59ðxÞ þ

c
c�d q58ðxÞ

are solved, and then transforming back. The helium generation rate
is given by

dqHe

dx
¼ aq59ðxÞ ¼ a

c
c� d

q58ð0Þ½e�dx � e�cx� ð5Þ

assuming that only 59Ni(n,a) produces a-particles. The fit parame-
ters are c ¼ 0:0255, a ¼ 0:0711, and d ¼ 0:297 dpa�1. Pristine type
Table 1
Model material parameters for type-316 stainless steel

Bulk parameters: Lattice cons
Burgers vec
Atomic volu
Shear modu
Poisson’s ra
Damage pro

Vacancy parameters: Relaxation v
Migration e
Formation e
Formation e
Pre-exponen
Shear polari

Self-interstitial parameters: Relaxation v
Migration e
Pre-exponen
Shear polari

Interstitial helium parameters: Relaxation v
Migration e
Pre-exponen
Shear polari

Substitutional helium parameters: Relaxation v
Migration e
Pre-exponen
Shear polari

Void parameters: Relaxation v
Surface ene
Temperatur
Adsorption
Migration e
Pre-exponen

Environmental parameters: Temperatur
Flux /
316 stainless steel is approximately 14% nickel, with 68.08% of that
58Ni and with no naturally-occurring 59Ni. Other relevant materials
parameters for type-316 stainless steel are listed in Table 1.

Non-interacting diffusion (independent random walks) implies
Dm;n ¼ Dm þ Dn. Defect collision cross-sections are simply given by

Am;n ¼ 4pðrm þ rnÞ for m 62 fv; vh;h; ig and n 62 fv; vh;h; ig
Am;n ¼ rm þ b for n 2 fv; vh;h; ig ð6Þ

in terms of radii for (spherical) defects, rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ð3nvXÞ2

4p

q
(except for

interstitial monomers, where ri ¼ rh ¼ rv). For consistency with ear-
lier work, cross-sections involving monomers are defined using the
Burgers vector magnitude in place of a monomer radius.

Bias factors between voids and the four defect monomers are
calculated from a mean field solution of the diffusion including
stress-mediated interactions [34]. The infinite series describing
the image interaction [37] is fit by a simple analytic form, while
the modulus interaction [38] is treated analytically. The numerical
results are tabulated for small voids and computed as needed for
larger ones. Long range void–void interactions are presently ne-
glected, so Zm;n ¼ 1 for m;n 62 fv; vh;h; ig. In principle, the effect
of any long-range interactions or net drift velocities (e.g., from
external stress or temperature gradients [39]) can be incorporated
in the void–void reaction rates, so the mean field reaction kernel, K,
has general applicability.

Thermal emission from vacancy clusters is evaluated by a de-
tailed balance argument. Equating vacancy emission and absorp-
tion for the n-mer identifies the chemical potential, l½n�v ¼
F ½n� � F ½n�v�, in terms of the n-mer and ðn� vÞ-mer (i.e., void minus
one vacancy) free energies. Rewriting in terms of void internal
energies, E, and the inert gas pressure, P:

c½n�v ¼ c½eq�
v e E½n��E½n�v��PXð Þ: ð7Þ
tant a0 3:639� 10�10 m
tor b a0=

ffiffiffi
2
p

me X a3
0=4

lus l 8:295� 1010 Pa
tio m 0.264
duction efficiency n 0.1

olume �0.2 X
nergy Em 2:08� 10�19 J
nergy Ef 2:88� 10�19 J
ntropy Sf 1.5 kB

tial factor 1:29� 10�6 m2/s
zability �2:4� 10�18

olume 1.50 X
nergy Em 0:320� 10�19 J
tial factor 1:29� 10�6 m2/s

zability �2:535� 10�17

olume 0.60 X
nergy Em 0:320� 10�19 J
tial factor 1:29� 10�6 m2/s

zability �2:535� 10�17

olume �0.2 X
nergy Em 2:08� 10�19 J
tial factor 1:29� 10�6 m2/s

zability �2:4� 10�18

olume 0
rgy c0ðT ¼ 0Þ 2.408 J/m2

e derivative dc0=dT 0:440� 10�3 J/m2/K
factor K 0.45–0.80
nergy Em 2:08� 10�19 J
tial factor 1:29� 10�6 m2/s/n4=3

v

e T 300–700 C
10�6 dpa/s
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Gas pressure is described with a non-ideal equation of state for he-
lium versus density and temperature [40]. No volume relaxation is
included (i.e., the void volume is nvX). In the absence of surface-ad-
sorbed impurity atoms, E½n� is parametrized in terms of an effective
surface energy, c½n�, and the surface area of a spherical cavity of
volume nvX

E½n� ¼ c½n�4pr2
n ¼ Kc0ðTÞ 1� 0:8

nv þ 2

� �
4pr2

n: ð8Þ

In the continuum limit, c½n� approaches that of a flat, clean surface,
c0ðTÞ, while it approaches the results of atomic calculations in the
limit of small voids [41]. This surface energy is then further reduced
by an constant scale factor, K, to reflect the presence of adsorbed
oxygen impurities [42] (see Table 1). Finally, the emission rate is ob-
tained from c½n�v and the vacancy-cluster reaction parameters for the
ðn� vÞ-mer. For straight, jogged dislocation segments, c½d�v ¼ c½eq�

v ,
the thermal equilibrium concentration. Emission rate coefficients
in Eq. (2) are represented as unary reactions, by including the de-
fect-dependent c½n�v within the rate coefficient.

At some maximum density, an over-pressurized bubble would
begin to emit self-interstitials via loop punching [40]. Such a pos-
sibility is not considered here; instead, an artificial constraint is
imposed on the helium density in a reactant cluster, nh 6 2nv.
Any reactions that would yield a higher-density are disallowed.
Thermal dissociation of substitutional helium into a vacancy plus
interstitial helium is similarly assumed to be energetically impos-
sible at temperatures of interest. Note that self-interstitial and
interstitial helium aggregation is excluded since interstitial loops
are effectively part of the dislocation density model. Mixed inter-
stitial clusters can develop in principle [43].

Void diffusivity Dn ¼ Dv=n4=3
v for n ¼ ðnv;nhÞ. This gives both the

correct monomer value and size-dependence for large cluster dif-
fusion [11,12], although the activation energy for void migration
should more properly be that for surface diffusion. This diffusivity
takes no account of the effect of reversible pinning [44], or internal
gas pressure on the migration [45], or radiation-enhanced diffusion
[46], or, e.g., that vacancy dimer diffusion may be Dv2 ’ Dv. Trap-
ping at dislocations and grain boundaries are not considered. Such
features would be straightforward to incorporate in the future.

The dislocation model reproduces measured dislocation densi-
ties versus dose and temperature [32]. It includes separate source
and annealing terms in terms of the biased flow of radiation-in-
duced vacancies and interstitials. There is one adjustable parame-
ter, l, representing a characteristic dislocation pinning length [32].
This is taken to be independent of the density of voids/bubbles in
the matrix, because the pinning length in stainless steels is more
determined by carbide precipitates than by the density of voids/
bubbles.
3. Numerical method

3.1. Overview

Once initial conditions for the microstructure and the tempera-
ture- and radiation-environment are fixed, the Master Eqs. (2) and
3) and the dislocation model [32] completely determine the void/
bubble size distribution function PðtÞ ¼ fqnðtÞg. These stiff, non-
linear coupled rate equations can be integrated numerically for a
small number of species [18]. However, direct integration becomes
impractical for a large domain of cluster sizes. Coarse-grained
approximations group similar clusters together to reduce the num-
ber of distinct species [47], but even they are intractable for multi-
dimensional distributions. Monte Carlo schemes for discrete coa-
lescence events [16,21] can naturally encompass large voids of
arbitrary composition; however, they are inefficient for simulating
nucleation from sub-critical clusters. Here, the advantages of both
rate equations and Monte Carlo methods are combined by parti-
tioning the cluster composition domain into two overlapping re-
gions. Separate sub-distributions are defined for each, labeled ME
and MC for treatment by Master Equation and Monte Carlo, with
P ¼ PME þ PMC. Such split distribution functions have been used be-
fore in a Fokker–Planck treatment of void growth [5]. Similar ap-
proaches are found in non-equilibrium chemistry [24,30] and
plasma physics applications [48].

Each sub-distribution of P is composed of a set of discrete
ensembles of identical clusters, represented by ðn;qÞ for the mul-
ti-dimensional cluster composition, n, and the paired ensemble
density, q. The distribution PME ¼ fðn;qÞgME includes interstitials,
i, and vacancy–helium clusters, n, with 0 6 nv 6 NME

v and
0 6 nh 6 NME

h . There is exactly one element for each ME species,
for a total of NME. Only the densities of the ME elements evolve
over time; the set of allowed compositions is fixed. A sparse, ran-
dom set, fðn;qÞgMC, approximates PMC for all 0 6 nv; nh <1. The
total number of elements, NMC, is variable, and there may be none,
one, or many MC elements (each with potentially different values
of q) at a given composition coordinate n. Both the densities and
the compositions of the MC elements evolve with time as defect–
defect reactions occur. In essence, the elements of PMC also consti-
tute so-called ‘macroparticles’, already in wide use for non-equilib-
rium plasma physics problems [49].

The various elements of the two sub-distributions are evolved
using the most efficient method available. ME–ME reactions (i.e.,
those processes with reactants and product among the elements
of PME) are evaluated in a continuum approximation, using the
Master Equation [18]. Monomers can be treated separately by a
quasi-stationary approximation or evolved along with the rest of
the ME distribution through the coupled non-linear reaction rate
equations. Discrete MC–MC reactions are performed stochastically
using a Markov Monte Carlo procedure [16]. ME–MC cross-reac-
tions are included using either the Markov Monte Carlo method
or Poisson-distributed random walks [21,22] for PMC, and using
average sink or source terms in the rate equations for PME. There
are also procedures to transfer clusters between the two sub-dis-
tributions and to regulate the number of elements and their
ensemble densities in PMC, in order to control statistical errors
and computational cost. This combined algorithm is elaborate, so
the different approaches for each of the various components are
described in detail in the following sections.

The whole of the material microstructure is evolved over a
time-step, s, by operator splitting into five stages. First, ME–MC
reactions for rapidly evolving MC clusters (i.e., those with small
nv) are included with a Markov chain method (Section 3.5). Second,
the ME–MC reactions for the large, slowly-evolving clusters are
evaluated by Poisson-distributed random walks in composition
space; this encompasses each possible reaction with ME species
(Section 3.5). Third, all MC–MC reactions are evaluated with the
Markov Monte Carlo method. (Section 3.4) This completes the evo-
lution of PMC over s. The fourth stage integrates the ME including
the average source and sink terms from MC defects and disloca-
tions (Section 3.2). This completes the evolution for the void/bub-
ble P. At this point, clusters may be exchanged between PME and
PMC, without affecting the instantaneous total P in any way (Sec-
tion 3.3). This process may create new MC elements or eliminate
existing ones, in order to control the growth of NMC versus time.
Fifth and finally, dislocation evolution is performed using a previ-
ously-described model [32].

Overall numerical accuracy is monitored through the conserva-
tion of host and helium atoms. This must be carefully maintained
in any void nucleation calculation. Obviously, a systematic imbal-
ance could distort the swelling results, but even small, fluctuating
numerical errors might potentially affect the predicted nucleation
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behavior. The incubation period represents a sort of barrier-cross-
ing problem, involving nucleation of stable voids and concomitant,
self-consistent changes in the vacancy/interstitial populations. In
practice, a simulation must not spuriously affect the crossing into
the steady-state; i.e., the associated numerical errors must not sig-
nificantly promote or inhibit void nucleation.

By construction, the procedures in Sections 3.3 and 3.4 will al-
ways conserve the number of host and helium atoms and exactly
treat the number of clusters. Operator splitting of the evolution
equations between Sections 3.2 and 3.5 does cause first-order
time-step errors, but these are conventionally controlled by adjust-
ing the overall time-step, s. Numerical integration errors within
Section 3.2 are similarly managed through the VODE tolerance
parameters and the resulting internal time-steps [18]. Conserva-
tion errors are dominated by differences between the ME and MC
treatment of reactions (see Section 3.5). In essence, the flux of
ME particles to the MC clusters occurs continuously, while the
MC clusters grow in discrete, stochastic jumps. The average rate
of growth of an individual MC macroparticle necessarily equals
the net influx of ME particles, but there are residual, random devi-
ations from this trend. This corresponds to random discrepancies
in the usual continuity equation, ~r �~J ¼ dN=dt (i.e., conservation
errors). Integrated over time, this Monte Carlo noise accumulates
as a random walk with zero average expectation. In general, the
magnitude of the RMS error can be controlled by adjusting NMC;
it approaches zero as NMC !1. The relative error asymptotically
approaches zero once steady swelling is achieved – i.e., the net va-
cancy and helium content increases linearly with time while the
error grows only as

ffiffi
t
p

. Thus, the relative error tends to vanish over
long times for the radiation swelling problem.

These artifact statistical fluctuations are relatively most impor-
tant at low temperatures and especially during incubation, when
NMC is small, defect annihilation dominates, and little net swelling
occurs. For the situations considered here, stable cavities form nat-
urally under the vacancy supersaturation and the essentially irre-
versible aggregation of helium. Thus, the added noise is relatively
inconsequential. For example, the total vacancy content (net swell-
ing) is shown in Fig. 1 along with the instantaneous error for a cal-
culation without cluster coalescence at 10�6 dpa/s and 500 C, using
0 0.5 1 1.5 2
Dose (dpa)

0

2000

4000

6000

8000

10000

N
 (a

pp
m

)

Total Vacancy
Vacancy Error X1000

Fig. 1. The total vacancy content (a measure of the swelling) and the net vacancy/
interstitial conservation error are shown for c ¼ 0:4c0ðTÞ, at T = 500 C, 10�6 dpa/s.
The macroparticles reach NMC ’ 1500 at 1 dpa, at which point new ones are still
forming.
void surface energies of 0.4 times c0ðTÞ. The vacancy/interstitial er-
ror is calculated as the difference between the net integrated flux
of interstitials to the dislocations and the net vacancy content in
all point defects and defect clusters. The former quantity is ob-
tained from numerical integration of the rate theory equations,
while the latter includes rate theory and Monte Carlo contribu-
tions. This particular simulation includes up to NMC ’ 1500.
Increasing NMC to 14000 changes the overall vacancy content by
just 10 appm at a dose of 1 dpa, while the density of visible voids
(not shown in the figure) changes by 2%. Thus, the swelling behav-
ior is not sensitive to the NMC-dependent error, i.e., the Monte Carlo
noise does not unduly promote or suppress nucleation.

3.2. ME–ME reactions

Small defect clusters develop at high concentrations under irra-
diation, and so they dominate the system of reactions. However,
they quickly reach a quasi-stationary distribution wherein further
reactions cause little change in their densities; i.e., the majority of
their reactions subsequently cancel one another. Thus, it is much
more efficient to treat their net behavior in a continuum approxi-
mation than to explicitly account for individual defect reaction
events. The ordinary differential equation solver, VODE, provides
an optimized treatment of stiff, non-linear reaction equations
[18], given fn ¼ dqn

dt (Eqs. (2) and (3)) and the Jacobian, Jnm ¼ ofn
oqm

for all species. The computational cost increases rapidly with the
number of coupled equations, hence the cluster domain is limited
to 0 6 nvac 6 NME

vac and 0 6 nhel 6 NME
hel . Typically, NME

vac ¼ 10—100 and
NME

hel ¼ 2—10. Some terms are excluded from the Master Equation
so that all reaction products remain within this finite domain.
Clusters with 0 6 nvac 6 NME

vac=2 and 0 6 nhel 6 NME
hel=2 may undergo

any mutual reactions, but no other ME clusters may undergo any
reactions. These latter clusters are frozen in size, so their density
only increases as reaction products accumulate. Frozen clusters
eventually transfer to the MC distribution as described in Section
3.3, after which they will undergo reactions according to the MC
procedure.

With reaction constraints and separate ME and MC distribu-
tions, the vacancy Eq. (2) becomes

dqv

dt
¼ gvðtÞ þ Kðv2; iÞqv2

ðtÞqiðtÞ

þ
X

n2ME

�Kðn; vÞqnðtÞqvðtÞ þ Kðn;0ÞqnðtÞ½ �U 1
2

NME � n
� �

� Sfast
v þ Sslow

v ðt0Þ

 �

qvðtÞ þ Sfast
0 þ Sslow

0 ðt0Þ

 �

ð9Þ

restricting the sums over n 2 ME to reactive defects. Eq. (1) also
parametrizes unary vacancy emission reactions as the n-null reac-
tion, Kðn;0Þ ¼ Zn�v;vAn�v;vDn�v;vc½n�v�

v . S includes the external source
and sink terms for reactive elements of PME; it accounts for ME reac-
tions with defects in PMC and with dislocations. Vacancy absorption
at MC defects and dislocations is parametrized by Sv, and vacancy
emission by S0. The vacancy sinks and sources include separate
terms that either evolve slowly or rapidly with time. The coeffi-
cients are obtained in Section 3.5. The rest of Eq. (2) takes similar
form, with sinks Si, Svh, or Sh. (Only vacancies can be thermally emit-
ted from defect clusters, so S0 is the only source term.)

Operator splitting over the time-step, s, is such that external
source and sink terms S are held constant as PME evolves. S is di-
vided into terms that evolve slowly or rapidly with time. The bar
indicates an average of the sink strength over the time-step, from
t0 to t0 þ s, useful for rapidly evolving MC clusters, while slowly-
evolving dislocations and large MC voids are simply evaluated at
the beginning t0 (see also Section 3.5 for further details).
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The constrained coalescence Eq. (3) becomes

dqn

dt
¼gnðtÞ

þ
X

m2fv;vh;hg
Kðm;n�mÞqmðtÞqn�mðtÞ 1�dm;n�m

2

� �
ð1�Uðm�nÞÞ

(

�U
1
2

NME�ðn�mÞ
� �

U
1
2

NME�m
� �

�
X

m2fv;vh;h;ig
Kðm;nÞqmðtÞqnðtÞU

1
2

NME�n
� �

þ½Kði;n

þvÞqiðtÞqnþvðtÞþKðnþv;0ÞqnþvðtÞ�U
1
2

NME�ðnþvÞ
� �

�½Kði;nÞqiðtÞqnðtÞþKðn;0ÞqnðtÞ�Uðn�vÞU 1
2

NME�n
� �

þ �
X

m62fv;vh;h;ig
Kðm;nÞqmðtÞqnðtÞU

NME

2
�n

 !
U

NME

2
�m

 !(

þ1
2

X
m62fv;vh;h;ig

0Kðn�m;mÞqn�mðtÞqmðtÞð1�Uðm�nÞÞ

�U
NME

2
�ðn�mÞ

 !
U

NME

2
�m

 !)

� Sfast
n þSslow

n ðt0Þ

 �

qnðtÞ

ð10Þ

for clusters m;n 2ME, and n 62 fv; vh;h; ig. The primed summation
excludes n�m 2 fv; vh;h; ig, since the monomer reactions are eval-
uated separately. S includes any reactions of the n-mer with the MC
clusters and with dislocations. There are no reactions that consume
frozen clusters, so their concentration increases with time.

A subset of the disallowed reactions would produce clusters
that still lie within the ME domain. These have been excluded,
for simplicity and to better resemble an earlier scheme for mono-
mer aggregation [5]. Specifically, a homogeneous boundary condi-
tion is imposed on the Fokker–Planck equation in Ref. [5], at
n ¼ NME

vac. Clusters that grow to the boundary are removed from
the Master Equation treatment and accumulated separately, during
which time they are prevented from changing size. This is equiva-
lent to keeping those NME

vac-sized clusters within PME but disabling
all of their reactions. Frozen clusters are then intermittently trans-
ferred to PMC, where they are no longer constrained [5].

Ideally, the ME domain will encompass all non-zero generation
terms, gn, and include as many sub-critical or transient defect clus-
ter species as possible. A relatively small domain of NME

v ’ 60,
NME

h ’ 4 is chosen here, reflecting the computational demands that
coalescence imposes.

Similarly to [5], the solution is recorded at exponentially-
increasing intervals, up to some smax. This time-step is irrelevant
to the ME evolution itself, which advances by adaptive sub-steps.
However, s controls errors from operator splitting of the evolution
equations, and it governs the creation of MC elements, as described
below.

Because the sink/source terms, S, are evaluated by a discrete MC
method, they introduce a fictitious noise to the continuum rate
equations. This partly manifests as step-function discontinuities
in the sink strength over successive time-steps, which in turn
causes transient relaxation in the concentrations of the ME species.
The numerical solution tries to accurately follow the transients,
potentially making the fully coupled, non-linear evolution ineffi-
cient, when large time-steps are otherwise possible. Rather than
faithfully simulating these spurious transients at late times, it
may be preferable to solve the monomer concentrations (Eqs. (2),
(9), etc.) in the quasi-stationary approximation after any real tran-
sient behavior (due to the abrupt onset of irradiation or other
changes in environmental parameters) has concluded. Eq. (10)
for dimers and larger clusters may then be solved while holding
the monomer concentrations fixed over the time-step. In practice,
after a brief transient, the results are comparable to those obtained
from the full, coupled, non-linear ME solution.
3.3. Transfer between ME and MC domains

A majority of the ME elements in a small multi-dimensional
domain will lie near its boundary, and so the majority of the ME
cluster species will be artificially frozen. The constraints on the de-
fect clusters are only lifted after they are transferred to PMC. There
are three desiderata to this transfer process. Foremost, it must
minimize any systematic, constraint-induced errors, therefore
the density of frozen clusters must be small compared to the rest
of P.

Secondly, the MC computational cost must be controlled, there-
fore NMC must be kept small. Rather than increasing NMC at every
opportunity, frozen clusters at n 2ME are allowed to accumulate
until exceeding a spawning threshold density, qME

n > qsp, as in
[5]. At the end of that time-step, a portion of the accumulated den-
sity is removed from PME and transferred to a new element of PMC,
incrementing NMC

ðn;qnÞ
ME ! ðn;qn � dqÞME þ ðn; dqÞMC ð11Þ

with the ME and MC compositions coinciding. If the accumulated
qME

n > qsp after each time-step, then the accumulating clusters are
effectively never constrained. Finally, it is imperative to minimize
any NMC-dependent Monte Carlo statistical error. Individual MC ele-
ments with the largest q will contribute the most to this error.
Therefore, if qME

n � qsp at the end of a time-step, then DN > 1
new MC elements are created, as

ðn;qnÞ
ME ! ðn;qn � dqÞME þ DN � n;

dq
DN

� �MC

ð12Þ

Equivalently, MC elements with large q may be split into identical
macroparticles with smaller densities. The chosen values for s,
qsp, and the functional dependence of DN on dq control the NMC-re-
lated statistical error and computational cost for a simulation. Typ-
ically, log2ðDNÞ ¼ Intðlog30ðdq=qspÞÞ.

For example, the distribution in Fig. 2 shows the production of
many MC macroparticles containing 2–4 helium atoms; these react
and form a plume that extends to nv ’ 100 (beyond the view of the
figure). The ME domain used in this example also includes frozen
cluster species with 5–9 helium; these species have not yet
reached the threshold density. They eventually spawn MC ele-
ments, but at a much slower rate than for the near-critical sizes
of 2–4 helium. Even at this early time, the total density of con-
strained ME clusters is small compared to the MC population so
constraint errors are minimized.

Since qsp cannot be made arbitrarily small in practice, it is use-
ful to add a second transfer mechanism. When a pre-existing MC
element at n falls inside the frozen ME domain, the change:

ðn;qnÞ
ME þ ðn;qnÞ

MC ! ðn;qn � dqÞME þ ðn;qn þ dqÞMC ð13Þ

leaves the total distribution unchanged. NMC remains constant, so
the calculation remains tractable. In practice, the maximum amount
dq 6 qn is transferred until the receiving MC element reaches a cut-
off density, qMC

n þ dq 6 qmax (where typically, qmax ’ 2qsp to 10qsp.)
The cutoff prevents over-weighting of individual Monte Carlo ele-
ments so as to control the statistical error.

At low temperatures, a very high density of small bubbles can
coexist with a moderate density of large, low-pressure voids. Such
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Fig. 2. A portion of the void/bubble distribution for a model with mobile monomer
defects and sessile clusters, c ¼ 0:8c0ðTÞ, at T = 300 C, 10�6 dpa/s, and
32� 10�3 dpa. For reference, the largest void in the distribution contains 110
vacancies (not shown). The solid lines display the loci of stable and unstable
equilibrium cluster compositions, based on average vacancy accumulation rates.
This distribution has not been smoothed – the pixellated appearance reflects
discrete cluster compositions.
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distributions are most efficiently treated by making qmax size-
dependent, so that the maximum macroparticle densities are high
in the region of bubbles, but low in the region of voids. Macropar-
ticles can freely wander between the two regions. Accordingly, if
macroparticle A moves to a region where qA > qmax, it may be split
into two identical parts; or if two MC elements at the same coordi-
nate have qA þ qB < qmax, they may be united into one.

In problems of reversible nucleation and growth, small MC clus-
ters may shrink and disappear. It is computationally inefficient to
follow unstable clusters by Monte Carlo methods. Accordingly,
macroparticles of the smallest vacancy clusters (with both
nvac < Nmin

vac < NME
vac and nhel ¼ 0) are deleted at the end of each

time-step and their density returned to the corresponding element
of PME. (The numerical solution of the ME automatically accommo-
dates any subsequent transients by adjusting its internal
time-steps.) The minimum MC size should be large enough that
macroparticles at the threshold only rarely shrink to monomer
sizes during the interval s. It should also be far enough from
NME

vac=2 that the cycle ME!MC!ME (involving creation of a new
macroparticle, shrinkage of the constituent clusters, and transfer
of that element back to PME) is infrequent. In practice,
Nmin ¼ NME=4 is used, and these two criteria are accomodated by
taking the largest possible NME. Helium clusters are never returned
from MC to ME distribution; helium emission is not permitted, so
the clusters will only grow along the helium axis.

In the examples considered here, all ME clusters are sub-critical
for NME

vac ’ 60, so that newly-created MC particles frequently shrink
and are annihilated. This is especially true at low temperatures,
when the proliferation of small voids favors vacancy/interstitial
recombination. Here, this ‘rare event problem’ for nucleation of
stable voids from small vacancy clusters is at least improved from
conventional kinetic Monte Carlo methods, where even the mono-
mers would be treated stochastically.

Ultimately, direct application shows this mixed scheme is suit-
able for radiation damage calculations to high doses.
3.4. MC–MC reactions

Coalescence problems are frequently treated by a Markov
Monte Carlo method [16]. A straightforward approach defines a fi-
nite volume, V, containing N (i.e., NMC) discrete clusters of sizes fng
that stochastically evolve to a new N � 1 population fn0g through
the binary coalescence of any pair of particles. The average rate
of reaction between the ith and jth particles is simply
Kðni;njÞ=V2 per unit volume. The total rate of reaction of all N clus-
ters is RN , where

Ri ¼
Xi

k¼1

Rk;N ð14Þ

and

Ri;j ¼
Xj

k¼1

1
2

Kðni;nkÞ=V ð15Þ

in terms of the sum over reactions in the entire volume, V, assuming
they are uncorrelated and occur in parallel. Ri;N is proportional to
the rate at which cluster i reacts with all other clusters. A stochastic
sequence of discrete reactions may be constructed from these
parameters. The random interval, dt, to the next reaction is obtained
from a uniform variate, x 2 ð0;1�, as [50]:

dt ¼ � lnðxÞ=RN : ð16Þ

The first cluster of the random reaction pair, i, is selected with a
probability proportional to Ri;N , from y 2 ð0;1� and

Ri�1

RN
< y 6

Ri

RN
; ð17Þ

where R0 � 0. Finally, the reaction counterpart, j, is identified from
z 2 ð0;1� and

Ri;j�1

Ri;N
< z 6

Ri;j

Ri;N
ð18Þ

with Ri;0 � 0. This selects j with a probability proportional to
1
2 Kðni;njÞ=V . The procedure repeatedly selects new x, y, and z for
the next event, increments the system time by (new, random, dif-
ferent) amount dt, performs the reaction iþ j, and recalculates R
for the next iteration. This repeats until the elapsed time,

P
dt, ex-

ceeds the maximum time s. Since the last reaction falls outside the
desired interval, it is discarded without being performed. The proce-
dure may then be started anew for subsequent, regular time-steps,
s. In effect, the overall algorithm employs stochastic sub-steps to
evaluate MC–MC reactions during the fixed interval, s.The choice
of two random numbers to select the pair, i; j, differs from the usual
scheme, where the pair is selected from a single value. In either
case, the search for i and j takes oðlog2ðNÞÞ operations using the
method of bisection [51]. However, separate selection of i and j
makes it possible to record all Rm with oðNÞ storage space and a
one-time computational effort of oðN2Þ. Once i is determined, Ri;m

may be tabulated with oðNÞ effort for all m, so the full matrix need
not be stored. Finally, after i and j react, the Rm may be updated with
oðNÞ effort by replacing only those terms involving the old clusters i
and j with the results for a single new, coalesced cluster, and re-
indexing to account for the lost cluster. Since RN is an extensive
quantity for a given total density, evolution of N particles over a fi-
nite interval requires oðN2Þ effort and oðNÞ storage. Specifying the
binary reaction rate coefficients, K, as a half-triangular matrix in-
creases the efficiency marginally.This MC scheme has difficulty
modeling widely varying concentrations of reactants (e.g., the
monomer density is typically orders of magnitude higher than the
large clusters for radiation damage). Also, N decreases after every
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coalescence, which increases the statistical noise. There are meth-
ods that preserve N [19,27]. However, other approaches make it
possible to preserve N and encompass a wider range of densities
at the same time. In the approach taken here, the discrete MC ele-
ments are macroparticles, widely used in, e.g., non-equilibrium sim-
ulations of plasma physics [49]. (This is distinct from related,
‘weighted particle’ schemes for coagulation [20,23,52].) Here, the
jth macroparticle in the system consists of an ensemble of clusters
all of the same composition ðnj;qjÞ. Consistent with the Gillespie
procedure, macroparticle reactions are evaluated discretely, so clus-
ters in an ensemble react simultaneously but otherwise stochasti-
cally. However, here reactants will generally have different
ensemble densities, qL < qH , which are independent of their sizes/
compositions, nL;nH . The lower-density macroparticle, L, reacts
completely, leaving behind an unchanged portion qH � qL of clus-
ters from the higher-density ensemble, H. The total cluster density
declines, but N stays constant, and N-dependent errors remain stea-
dy over time.

Macroparticle reaction rates (analogous to Eq. (15)) are defined
so as to reproduce the continuum limit as N !1. Pairs i and j, with
qi < qj, react according to

ðni;qiÞ þ ðnj;qjÞ ! ðni þ nj;qiÞ þ ðnj;qj � qiÞ ð19Þ

at an average rate of Kðni;njÞqj.
Two macroparticles of the same density (qi ¼ qj ¼ q; i 6¼ j) react

as

ðni;qÞ þ ðnj;qÞ ! ðni þ nj;q=2Þ þ ðni þ nj;q=2Þ ð20Þ

at an average rate of Kðni;njÞq. The product is simply split into two
equal pieces so that N remains constant. Finally, the individual clus-
ters within a single macroparticle ensemble may coalesce with one
another, so there is also a unary reaction process

ðni;qiÞ ! ð2ni;qi=2Þ; ð21Þ

which also proceeds at an average rate of Kðni;niÞqi. This possibility
modifies Eq. (15) to include a non-zero reaction rate for i ¼ j.

Macroparticle dynamics never corresponds to an atomistic sim-
ulation for finite N. Instead, this is a distinct, approximative dis-
cretization of the continuum equations themselves, in the same
spirit as earlier approaches [5]. Again, PðtÞ is approximated here
by a sparse set of elements without arbitrarily imposing some
coarse-graining of finite difference equations for the distribution.
Since the computational cost scales as oðN2Þ for a dense reaction
matrix, the method is also efficient. This is especially advantageous
in higher dimensions, e.g., in describing helium–vacancy–impurity
clusters.

3.5. ME–MC reactions

Additional schemes are required for treating reactions between
ME and MC elements. In the continuum approximation, reaction
with external entities, n 62ME, introduces unary sink terms to
the rate equation for m 2ME, cf. Eqs. (9) and (10)

SmðtÞqmðtÞ¼
X

n2MC

K m;nðtÞð ÞqnðtÞþKðm;dÞqdðtÞ
" #

qmðtÞUðN
ME=2�mÞ;

ð22Þ

where the summation includes all elements fðnðtÞ;qnðtÞg
MC at time

t and where Kðm; dÞ includes reactions with network dislocations.
The sink term, S, is identically zero for constrained ME defects. At
present, Kðm; dÞ is only non-zero for m ¼ ð1;0Þ; ð�1;0Þ and for va-
cancy emission Kð0; dÞ.

The counterpart to Eq. (22) is expressed for n 2 MC in the mac-
roparticle scheme by
ðn;qnÞ
MC ! ðmþ n;qnÞ

MC ð23Þ

as a discrete reaction with an average rate of Kðm;nÞqm. A stochas-
tic sequence of reactions at these average rates will approach the
continuum behavior of Eq. (22) in the limit NMC !1. A single reac-
tion can change a macroparticle size, cross-section, and reaction
rate substantially, if m is comparable in size to n. Accordingly,
ME–MC reactions for such ‘small’ MC clusters n < n0 are included
by the Markov Monte Carlo scheme described above, and the reac-
tion parameters are immediately updated to reflect the change,
before evaluating the next reaction.

Reaction events are randomly performed from the NMC � NME

matrix of reaction rates, at overall rate Q. If the next event occurs
within the desired interval, the ith MC element is selected as a
reactant with probability Qi=Q , where

Qi ¼
X

j

Kðni;mjÞqmj
ð24Þ

for reactive elements mj 2 ME and

Q ¼
XNMC

i¼1

Q i ð25Þ

The jth ME element is selected as a reactant with probability
Kðni;mjÞqmj

=Qi. Finally, the time index is updated, the reaction is
performed, and Q is revised. This is analogous to the Markov proce-
dure for MCMC reactions, except that the reaction matrix is full-
rectangular rather than half-triangular and that the rates are always
proportional to the density of the ME reactant.

As for the corresponding evolution of PME, the instantaneous
source/sink terms, Eq. (22), change after each discrete reaction
event in PMC. This may happen multiple times during the interval
s. It is not computationally practical to account for this variation
in detail (e.g., by evolving PME over each individual Markov sub-
step, dt). Instead, PME is updated by operator splitting; it is evolved
over the full time-step s only after all ME–MC and MC–MC reac-
tions in PMC are performed. To minimize any convergence error
for finite s, the instantaneous sink strength n < n0 can be replaced
with a weighted time average over the interval

Sfast
m ¼ 1

s

Z t0þs

t0

dt
X

n2MC

Kðm;nðtÞÞqmðtÞ
" #

ð26Þ

¼ 1
s
X

j

dtj

X
n

Kðm;nðtj�1ÞÞqmðtj�1Þ
" #

ð27Þ

finally expressed as a sum over random sub-intervals, dtj, between
discrete reaction times, tj�1 and tj as determined by Eq. (16).

Such attention to detail is unnecessary for large MC clusters
(and for network dislocations), where rapid reactions with highly
mobile defects (i.e., small m) do not substantially change the sink
strength over short intervals. Thus, it is sufficient to update param-
eters for the large n clusters at the end of each time-step. In this
case, MC clusters are evolved using a Poisson-distributed random
variate, PðxÞ, [21,53] for the number of reactions that occurs during
s. These MC elements are only updated at t0 þ s, with all reactions
accumulated in each of the NME channels

ðn;qnÞ ! nþ
X

m2ME

mP½sKðm;nÞqm�;qn

 !
: ð28Þ

Eq. (28) is the discrete analogue of the Gaussian-distributed random
walk used previously [5].

The corresponding ME sink term n P n0 is

Sslow
m ðt0Þ ¼

X
n2MC

Kðm;nðt0ÞÞqnðt0Þ þ Kðm;dÞqdðt0Þ ð29Þ
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Fig. 3. A portion of the void/bubble distribution as in Fig. 2, but at T = 500 C,
10�6 dpa/s, and 16� 10�3 dpa. The distribution has been smoothed for the large
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including the dislocation contribution, assuming that qdðtÞ is slowly
changing.

Finally, discrete reactions could also be evaluated by a rejection
method, given a Majorant kernel Mðm;nÞP Kðm;nÞ [52]. For
example, the reaction rates, M, can be evaluated on a coarse grid
of ni where all reactants ni 6 n 6 ni þ 1 are initially treated alike.
In a variant of this approach, M may be chosen to be a sum of prod-
ucts [23],

Mðm;nÞ ¼ ~MðmÞ � ~MðnÞ: ð30Þ

It is then only required to evaluate NMC vectors, M, (of one or more
dimensions) and to take dot products. Either approach is easier than
directly computing NMCðNMC þ 1Þ=2 binary rate coefficients for Eqs.
(14), (15). The Majorant kernel is selected to be easy to evaluate and
to predict a faster (or equal) event rate than the true system. To cor-
rect for any overestimate, the time index is updated according to
the usual Markov Monte Carlo procedure, but the reaction is only
performed if a uniform variate, w 2 ð0;1� also satisfies w 6
Kðm;nÞ=Mðm;nÞ. Thus, excess events predicted by M are rejected
(with the required probability 1� K=M). At present, the full reaction
rate coefficients from Eq. (1) can be evaluated very efficiently, so
this method is not employed here. However, this is expected to be
advantageous when biased cavity–cavity, cavity–loop, and loop–
loop reactions are included in the future.
clusters, where Monte Carlo data is increasingly sparse. The solid lines display the
stable and unstable equilibrium cluster compositions.
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Fig. 4. The full void/bubble distribution as in Fig. 3, but at T = 700 C. The curved
solid line locates the stable equilibrium bubbles; the critical void size is not visible
on this scale.
4. Results

4.1. Monomer aggregation model

A high density of trapping/recombination centers is believed to
delay the onset of void swelling [44,54,55]. Traps hinder void diffu-
sion and coalescence and prolong the incubation stage. The sim-
plest trapping model assumes that all dimers and larger clusters
are immobile: Dn � 0 for all n 62 fv; vh;h; ig, so that the last two
summations in Eq. (3) are zero. If Eq. (2) is solved separately from
the remainder of the Master Equation (Eq. (3)) in a quasi-stationary
approximation, then that problem may be solved by existing meth-
ods [5,56]. However, here the problem is simply treated as a limit
case of Smoluchowski’s coagulation equation.

Initial cluster populations are shown in Figs. 2–4 for type-316
stainless steel irradiated to low doses at 10�6 dpa/s and 300, 500,
and 700 C. It is well-known that helium–vacancy clusters may be
separated into distinct species (of equilibrium bubbles and stable
or unstable voids), according to their size-dependent free energies.
Accordingly, the figures are marked with black lines where the net
average vacancy addition rate for the defect clusters approaches
zero. The leftmost black line in Figs. 2–4 represents a hard wall
for over-pressurized bubbles: by fiat, bubbles cannot reach densi-
ties greater than two helium per vacant site. Here, this is imposed
by disallowing further reactions with helium- and self-interstitials.

Other lines separate clusters that add or lose vacancies on aver-
age. Small, over-pressurized bubbles tend to add vacancies until
reaching the next line in the figures, where stable helium bubbles
are in dynamic equilibrium with the vacancy and interstitial pop-
ulation. (This approximates the line of bubbles with P ’ c=2r,
which would be in equilibrium in the absence of a vacancy and
interstitial supersaturation.) The stability of these bubbles is re-
flected by their elevated concentration in that region, especially
visible in Fig. 4. Stable bubbles tend to grow along the equilibrium
line as they accumulate helium, while adjusting their vacancy con-
tent on average to remain in equilibrium. Finally, bubbles cannot
exceed some critical helium content – larger clusters are stable
voids that tend to add vacancies and grow to arbitrary size. This
is seen in Fig. 3; there the clusters grow along the line of stable
bubbles until reaching a critical helium content (11 heliums), at
which point they grow by adding vacancies in excess of helium,
forming a plume of rapidly-growing voids in the size distribution.

Voids are here simply taken to be cavities with higher vacancy/
helium ratio than any bubble species of the same helium content.
An approximately parabolic region under the black curves bounds
a set of small, unstable voids that tend to lose vacancies and shrink
back towards the equilibrium bubble configuration. For example,
this ranges from the origin to vacancy/helium compositions of
(19,11) and (94,0) in Fig. 3. The rightmost solid line identifies
the critical or unstable equilibrium void compositions; larger voids
tend to add net vacancies with time. Note that a percentage of
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equilibrium bubbles in Fig. 3 are able to fluctuate in vacancy con-
tent across the barrier of unstable voids. That is, they become sta-
ble voids without having first reached the critical helium content.
Similarly, helium dimers are readily able to cross the barrier of
unstable voids in Fig. 2. Very large voids ultimately become neutral
(unbiased) sinks, adding helium/vacancies at an average rate of
1:200 (based on anticipated asymptotic swelling of 1%/dpa and
model helium generation around 50 appm/dpa). Thus, voids ap-
proach a line of constant composition.

Except for a brief transient at the onset of irradiation, the va-
cancy monomer concentration decreases monotonically with time
as the total sink strength of the microstructure rises with dose.
After a few dpa, production of a-particles also peaks, and the he-
lium monomer concentration also declines. During this extended
period, equilibrium bubbles continue to grow by adding helium,
they continue to reach the critical size, and they continue to be-
come voids. However, the critical size for equilibrium bubbles in-
creases with time (as a function of declining qv), and the rate of
formation of new helium dimer nuclei and bubble growth rates de-
crease (as a function of declining qh þ qhv). This causes the rate of
void formation to decrease gradually with time, giving a broad void
size distribution. Eventually, the larger stable bubbles become
TEM-visible, and the overall size distribution becomes bimodal.

The time-dependent volumetric swelling for this model is
shown at a series of temperatures in Fig. 5. The low temperature
system is initially dominated by large numbers of transient, unsta-
ble vacancy clusters (Fig. 2) that serve as recombination centers
and suppress swelling. So many defect centers form that helium/
vacancy ratios are kept low, and helium plays a reduced role in
the initial evolution. As a result, the visible cavity density
(r > 0:5 nm) is sensitive to the surface energy parameter, c:
qvis ¼ 5� 1023 m�3 for cðTÞ ¼ 0:8c0ðTÞ and 1� 1024 m�3 for
cðTÞ ¼ 0:5c0ðTÞ. Eventually, some vacancy clusters acquire signifi-
cant amounts of helium, and the system is filled with a high con-
centration of small equilibrium bubbles. These function as
recombination centers; they keep the vacancy supersaturation
low so that few, if any, bubbles grow into stable voids. They also
keep the asymptotic swelling rate small. At and above 500 C, swell-
ing is more a matter of helium bubble formation and growth to-
wards critical sizes (Figs. 3 and 4). The cavity density and
swelling rates are therefore insensitive to c. The steady swelling
rate of 0.8%/dpa at 500 C is consistent with void swelling in austen-
itic stainless steel [7,8]. At higher temperatures, the increased he-
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Fig. 5. Volumetric swelling curves versus dose in the model that excludes void–
void coalescence. The cavity surface energy is fixed at cðTÞ ¼ 0:75c0ðTÞ.
lium mobility results in fewer cavities (7–8�1020 m�3 at 700 C),
and a smaller density of bubbles escape to become stable voids
and contribute to steady swelling.

4.2. Cluster coalescence model

The other simplified limit of defect trapping is to neglect it en-
tirely and assume that clusters diffuse freely according to their
size. The predicted void size distribution changes significantly
when coalescence is included. This is seen in Figs. 6 and 7, for
the same temperatures as in Figs. 2 and 3.

Coalescence reactions continually, preferentially consume the
smaller, more mobile clusters. The largest voids grow an order of
magnitude larger through coalescence, making the distribution of
stable void sizes substantially broader than before. Very large voids
achieve such low diffusivities as to be effectively immobile; this re-
sults again in a terminal void population. At low temperatures, the
removal of small unstable or equilibrium defect clusters reduces
the number of recombination centers, suppresses damage annihi-
lation, and speeds the formation of large, stable voids. This en-
hances low temperature swelling. At high temperatures, this
same coalescence of small clusters greatly reduces the total num-
ber of helium bubbles and voids, so that the total void sink strength
is kept small and the asymptotic swelling rate is diminished com-
pared to the monomer aggregation model (Fig. 8 versus Fig. 5,
respectively). Small clusters are absorbed as rapidly as new ones
form, which prevents the formation of a bimodal distribution of
small equilibrium bubbles and large voids. These differences sug-
gest that competition between trapping and coalescence of very
small (mostly TEM-invisible) clusters significantly shapes the
microstructure in real irradiated materials.

When coalescence is included, the terminal void density and
swelling rate remain sensitive to c up to 500 C. The predicted void
density at this temperature increases from 7� 1019 m�3 for
c ¼ 0:75c0 to 7� 1020 m�3 for c ¼ 0:5c0. The swelling rate for the
former case is only 0.3%/dpa at 50 dpa but reaches 0.8%/dpa for
the latter. This suggests that either the cavity surface energy is sub-
stantially smaller than the value for the clean metal or that the va-
cancy clusters have much smaller mobilities than are modeled
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Fig. 6. A portion of the void/bubble distribution as in Fig. 2 (300 C), but including
void coalescence and with cðTÞ ¼ 0:5c0ðTÞ. The distribution has been smoothed for
the large clusters, where Monte Carlo data is sparse.
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Fig. 7. The full void/bubble distribution as in Fig. 4 (500 C), but including void–void
coalescence and with cðTÞ ¼ 0:5c0ðTÞ.
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Fig. 8. Volumetric swelling curves versus dose in the model that includes void–void
coalescence. The cavity surface energy is set to cðTÞ ¼ 0:4c0ðTÞ.
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here. The swelling behavior finally becomes insensitive to the sur-
face energy by 700 C. In this limit, coalescence reduces the termi-
nal void density to 4–5�1018 m�3.

5. Conclusions

This paper introduces a mixed Master Equation/Monte Carlo
treatment of rate theory calculations in a mean field continuum
approximation. This enables flexible treatment of the defect den-
sity variables, using different algorithms to treat the various reac-
tions as efficiently as possible. The approximately quasi-stationary
distribution of small, unstable or transient clusters is treated (as
much as possible) by solving continuum rate equations. This elim-
inates the need to evaluate rapid individual reactions that mostly
cancel one another. Larger clusters are treated by Monte Carlo
methods, which treats clusters of arbitrary size and composition
without the need for a fixed grid or artificial discretization of the
defect distribution. A Markov method for smaller clusters accu-
rately simulates rapid fluctuations in size and in the reaction
parameters, and a Poisson-distributed random walk efficiently
treats the more gradual evolution of the largest clusters. Finally,
a macroparticle approach is introduced to encompass large differ-
ences in species densities in the Monte Carlo distribution.

This hybrid scheme readily treats void/bubble evolution to high
cumulative fluxes for temperatures and dose rates that are charac-
teristic of real reactor systems. Calculations demonstrate that void
coalescence provides an important channel for consolidating va-
cancy defects into large, stable voids, controlling the duration of
incubation and the terminal void density.

It is expected that thermal and radiation-induced micro-chem-
ical evolution of solute and precipitate distributions will influence
the cluster mobility and thereby the macroscopic incubation and
steady-swelling behavior. Some degree of void/bubble trapping
seems to be required in order to obtain a bimodal bubble/void size
distribution, while some coalescence may be needed to give a real-
istically low terminal void density at higher temperature. The cav-
ity surface energy determines the barrier for nucleation of stable
voids and hence also affects the incubation behavior; this contribu-
tion becomes temperature- and time-dependent if oxygen is
explicitly modeled. All of these effects can be addressed, in princi-
ple, by extensions of the method described here.

These calculations also suggest the importance of additional,
competing processes that are not evaluated at present, such as
interstitial–interstitial aggregation or cluster annihilation from
void–dislocation reaction. The methods described here can be ex-
tended to treat coalescence of loops as easily as voids, given a suit-
able binary reaction kernel. Such reactions should be included for
reasons of consistency, besides their likely contribution to tran-
sient and steady swelling behavior. They would be especially
important if radiation damage were introduced as a variety of
pre-formed defect clusters. Based on the preliminary findings for
cavity coalescence, more general defect cluster reactions are
expected to have a significant influence on radiation swelling
behavior.
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